Center for Nanoscale PROPERTIES OF BULK AND PORE-CONFINED CO₂ AND CO₂-RICH FLUIDS: **NEW EXPERIMENTAL APPROACHES** Washington UNIVERSITY PURDUE

Miroslaw S. Gruszkiewicz¹, Ryan Capobianco², Lingzong Meng³, Victoria DiStefano¹, Gernot Rother¹, Robert J. Bodnar² and David J. Wesolowski¹

¹Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, ²Department of Geosciences, Virginia Tech, Blacksburg, Virginia, ³School of Chemistry and Chemical Engineering, Linyi University, Linyi, P. R. China

DENSITIES AND VAPOR-LIQUID EQUILIBRIA BY VIBRATING TUBE DENSIMETRY

Objective: Develop a new VTD approach suitable for investigation of dense pore fluids and mixtures

- Densities of pore-confined fluids at near-critical and supercritical conditions were measured for the first time using VTD.¹
- Measurements yield total adsorption capacity via a novel approach, complementary to traditional gravimetric/volumetric adsorption methods.

ELECTROLYTIC CONDUCTIVITY TO 700 °C, 100 MPa

Ionic conductance is an excellent probe of ion-solvent interactions. Measurements in extremely dilute solutions (in the limiting law region) yield ion mobilities and association constants independent of additional assumptions. The required high sensitivity is possible only with flow cells built of non-corrosive materials to maintain high purity.

The new ORNL fluid-flow conductivity cell enclosed in a nickel alloy pressure vessel with concentric Pt electrodes, and zeropressure Pt-gold-sapphire seals at high temperature. The fluid-flow design and the material selection enable measurements on very dilute solutions (<10⁻⁶ mol/kg) with high sensitivity, even at very high temperature (to 700 ° C, 100 MPa).

 \Box Recent conductivity results:² no ionization in "wet CO₂":

The excess sorption VTD results for pore CO_2 in SiO_2 aerogel show large excess sorption peaks which are similar, but not identical with gravimetric results around the critical density and at high pressure.

VTD isotherms of adsorption clearly demonstrate the densification of the pore fluid (propane) in comparison with the bulk fluid at the same pressure.

Objective: Investigate the mechanism of the observed high reactivity of CO₂-rich fluid towards minerals and metals.

Recent experimental work suggests that CO₂ containing small amounts of dissolved water, corresponding to its solubility at ambient temperature, shows unusually high reactivity towards metals and minerals.

We undertook measurements² of the conductivity of such solutions to 200 °C and 20 MPa to detect the presence of ions in "wet CO_2 ". The results were negative – the conductivity of CO₂ remained significantly below that of pure deionized water and even below the sensitivity of the method.

Conclusion: There is practically no ionization in the CO₂-rich phase. The mechanism of the observed reactivity must be different from that seen in the water-rich phase. It is possible that water concentrates preferentially in CO₂-saturated thin layers at the solid-fluid interface.

SOLUTE ACTIVITIES AND WATER SORPTION IN POROUS SOLIDS TO 250 °C

Objective: Determine the solute properties needed for accurate simulation of CO₂ behavior (solubility, reactivity, etc.) in concentrated brines

Activities and solubilities of aqueous solutes and isotherms of water adsorption in geothermal rocks, minerals, and engineered porous materials have been measured by the unique ORNL gravimetric method. The results over wide ranges of temperature and composition are used characterize fluid-solid interactions and pore system geometries, develop universal property equations and validate molecular-level models.

Osmotic coefficients of

 \Box Densities and vapor-liquid equilibria of CO₂ + H₂O in the CO₂-rich region:

Objective: Advance the development of an accurate equation of state for $CO_2 + H_2O$ needed for energy applications by reducing large discrepancies in experimental data for this important mixture (e.g. solubility of water in CO_2).

- New measurements were made by VTD to 250 °C and 100 MPa.
- Fluid phase boundaries, essential for development of equations of state, can be detected from the changes of excess volume as a function of composition or from oscillation frequency patterns.

with literature data in the water-rich region, but for the CO₂-rich phase are significantly different from the two well-known earlier comprehensive studies. Accurate experimental data will

Recent vapor pressure results: activities in concentrated LiBr + CaBr₂ + H_2O :

Osmotic coefficients of LiBr, CaBr₂ and several LiBr + CaBr₂ mixtures (0.2, 0.5, and 0.8 mole fraction CaBr₂ shown) at 100 °C were determined from isopiestic vapor pressure measurements, using LiCl as the reference solution. The method also gives accurate solubilities and deliquescence/ efflorescence points in multicomponent brines. The results enable development of semi-empirical temperaturedependent speciated thermodynamic models of multicomponent brines for accurate simulation of carbon capture and storage environments.

REFERENCES

- 1. Gruszkiewicz, M. S.; Rother, G.; Wesolowski, D. J.; Cole, D. R.; Wallacher, D. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry. Langmuir 2012, 28, 5070-5078.
- 2. Capobianco, R. M., Gruszkiewicz, M. S., Bodnar, R. J., Rimstidt, J. D. Conductivity

ACKNOWLEDGMENTS

This work was supported as part of the Center for Nanoscale Control of Geologic CO₂ (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. VTD measurements on ethane, and the isopiestic work were supported by the U.S. Department of Energy, Office of Science. VTD apparatus rebuild and high-temperature $CO_2 + H_2O$ work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. R. Capobianco was

